تحليل البيانات باستخدام البايثون تحليل البيانات باستخدام البايثون
تفاصيل العمل

Chicago Food Inspections Analysis After weeks of diving into real-world data, I'm excited to share my latest project where I analyzed thousands of food inspection records in Chicago to uncover patterns, trends, and insights using Python & Machine Learning. Tech Stack: Pandas, NumPy, Seaborn, Matplotlib, Folium, WordCloud, Scikit-learn Key Highlights: Cleaned and preprocessed messy real-world data Visualized geographical inspection data on interactive maps Built a predictive model to classify Pass/Fail results (Accuracy: {your accuracy here, e.g., 0.84}) Extracted most common violations using WordClouds Performed clustering with KMeans & regression analysis Found seasonal/monthly patterns in failure rates Created interactive heatmaps for failed inspections Discovered the top cities and facility types with the highest failure rates

شارك
بطاقة العمل
تاريخ النشر
منذ 3 أسابيع
المشاهدات
19
المستقل
Mariam Ahmed
Mariam Ahmed
محللة بيانات
طلب عمل مماثل
شارك
مركز المساعدة