تحليل البيانات باستخدام البايثون تحليل البيانات باستخدام البايثون
تفاصيل العمل

Chicago Food Inspections Analysis After weeks of diving into real-world data, I'm excited to share my latest project where I analyzed thousands of food inspection records in Chicago to uncover patterns, trends, and insights using Python & Machine Learning. Tech Stack: Pandas, NumPy, Seaborn, Matplotlib, Folium, WordCloud, Scikit-learn Key Highlights: Cleaned and preprocessed messy real-world data Visualized geographical inspection data on interactive maps Built a predictive model to classify Pass/Fail results (Accuracy: {your accuracy here, e.g., 0.84}) Extracted most common violations using WordClouds Performed clustering with KMeans & regression analysis Found seasonal/monthly patterns in failure rates Created interactive heatmaps for failed inspections Discovered the top cities and facility types with the highest failure rates

شارك
بطاقة العمل
تاريخ النشر
منذ 18 ساعة
المشاهدات
5
المستقل
Mariam Ahmed
Mariam Ahmed
محللة بيانات
طلب عمل مماثل
شارك
مركز المساعدة